Fiche 03/04

Miroirs sphériques et lentilles minces sphériques

■ Foyers et distance focale

	Miroirs sphériques		Lentilles minces sphériques	
Focale	$f = \overline{SF} = f' = \overline{SF'} = \frac{\overline{SC}}{2} = \frac{R}{2}$		$f = \overline{OF} = -f'$	$f' = \overline{OF'}$
Vergence	$V = -\frac{1}{f'}$		$V = \frac{1}{f'}$	
	Miroir convergent	Miroir divergent	Lentille convergente	Lentille divergente
	$C F S \Delta$	$F \subset \Delta$	\overrightarrow{F} \overrightarrow{O} \overrightarrow{F}' $\overrightarrow{\Delta}$	F' O F Δ
	f < 0	f > 0 $V < 0$	f' > 0 $V > 0$	f' < 0
	V > 0	V < 0	V > 0	V < 0

lacktriangle Relations de conjugaison et grandissement transversal $G_t=$

$$G_t = \frac{\overline{A'B'}}{\overline{AB}}$$

	Miroirs sphériques	Lentilles minces
Formules de Descartes	ullet avec origine au sommet S :	ullet avec origine au centre optique O :
	$\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{\overline{SC}}$	$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$
	$G_t = -\frac{\overline{SA'}}{\overline{SA}} = -\frac{p'}{p}$	$G_t = \frac{\overline{OA'}}{\overline{OA}} = \frac{p'}{p}$
	ullet avec origine au centre C :	
	$\frac{1}{\overline{CA'}} + \frac{1}{\overline{CA}} = \frac{2}{\overline{CS}}$	
	$G_t = \frac{\overline{CA'}}{\overline{CA}}$	
Formule de Newton	ullet avec origine au foyer F :	• avec origine aux foyers F et F' :
	$\overline{FA'}.\overline{FA} = f^2 = \frac{R^2}{4}$	$\overline{F'A'}.\overline{FA} = -f'^2$
	$G_t = \frac{\overline{FS}}{\overline{FA}} = \frac{\overline{FA'}}{\overline{FS}}$	$G_t = \frac{\overline{FO}}{\overline{FA}} = \frac{\overline{F'A'}}{\overline{F'O}}$
	$G_t = \frac{1}{\overline{I}}$	$\frac{-f}{\overline{FA}} = \frac{\overline{F'A'}}{-f'}$

■ Miroirs Convergents (concaves)

$$f = \overline{SF} = \frac{\overline{SC}}{2} = \frac{R}{2} < 0$$

Objet	Image	Construction
réel $-\infty < \overline{SA} < 2f$	réelle $-1 < G_t < 0$ \rightarrow renversée \rightarrow réduite	A C B'
réel $2f < \overline{SA} < f$	réelle $-\infty < G_t < -1$ $\rightarrow \text{renversée}$ $\rightarrow \text{agrandie}$	A' C B S
$ \frac{\text{r\'eel} \in (\pi)}{SA} = f $ $ A = F $	à l'infini $\alpha' = \frac{\overline{AB}}{f}$	A'_{∞} A'_{∞} A'_{∞} A'_{∞} A'_{∞}
réel entre (π) et le miroir $f < \overline{SA} < 0$	virtuelle $1 < G_t < +\infty$ $\rightarrow \text{droite}$ $\rightarrow \text{agrandie}$	C F A S A'
$\begin{array}{c} \text{virtuel} \\ 0 < \overline{SA} < +\infty \end{array}$	réelle $0 < G_t < +1$ \rightarrow droite \rightarrow réduite	C F A' S A
à l'infini réel ou virtuel $\overline{SA} = \pm \infty$	réelle et dans le plan focal image $\overline{SA'} = f$ $A' = F$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Une seule possibilité pour obtenir un image virtuelle par un miroir convergent : placer un objet (réel) entre le plan focal objet et le miroir.

■ Miroirs Divergents (convexes)

$$f = \overline{SF} = \frac{\overline{SC}}{2} = \frac{R}{2} > 0$$

Objet	Image	Construction
$\frac{\text{r\'eel}}{\overline{SA}} < 0$	virtuelle $0 < G_t < +1$ \rightarrow droite \rightarrow réduite	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
virtuel entre (π) et le miroir $0 < \overline{SA} < f$	réelle $+1 < G_t < +\infty$ $\rightarrow \text{droite}$ $\rightarrow \text{agrandie}$	A' S A F C
$ virtuel \in (\pi) \overline{SA} = f A = F $	à l'infini $\alpha' = \frac{\overline{AB}}{f}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \text{virtuel} \\ f < \overline{SA} < 2f \end{array}$	virtuelle $-\infty < G_t < -1$ $\rightarrow \text{renvers\'ee}$ $\rightarrow \text{agrandie}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \text{virtuel} \\ 2f < \overline{SA} < +\infty \end{array}$	virtuelle $-1 < G_t < 0$ $\rightarrow \text{renvers\'ee}$ $\rightarrow \text{r\'eduite}$	F A' S B' C A
à l'infini réel ou virtuel $\overline{SA} = \pm \infty$	virtuelle et dans le plan focal image $\overline{SA'} = f$ $A' = F$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Une seule possibilité pour obtenir un image réelle par un miroir divergent : placer un objet (virtuel) entre le miroir et le plan focal objet.

■ Lentilles Convergentes

$$f' = \overline{OF'} = -f = \overline{OF} = \frac{\overline{FF'}}{2} > 0$$

Objet	Image	Construction
réel $-\infty < \overline{OA} < 2f$	$\begin{aligned} &\text{r\'eelle} \\ &-1 < G_t < 0 \\ &\rightarrow &\text{renvers\'ee} \\ &\rightarrow &\text{r\'eduite} \end{aligned}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
réel $2f < \overline{OA} < f$	réelle $-\infty < G_t < -1$ $\rightarrow \text{renversée}$ $\rightarrow \text{agrandie}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \frac{\text{r\'eel} \in (\pi)}{OA} = f $ $ A = F $	à l'infini $\alpha' = \frac{\overline{AB}}{f} = -\frac{\overline{AB}}{f'}$	B'_{∞} $X' \qquad A = F \qquad O$ A'_{∞} A'_{∞} B'_{∞}
réel entre (π) et la lentille $f < \overline{OA} < 0$	virtuelle $1 < G_t < +\infty$ $\rightarrow \text{droite}$ $\rightarrow \text{agrandie}$	A' F A O F' X
$virtuel \\ 0 < \overline{OA} < +\infty$	réelle $0 < G_t < +1$ \rightarrow droite \rightarrow réduite	
à l'infini réel ou virtuel $\overline{OA} = \pm \infty$	réelle et dans le plan focal image $\overline{OA'} = f'$ $A' = F'$ $\overline{A'B'} = \alpha.f'$	A_{∞} X' X' X' X' X' X' X' X'

Une seule possibilité pour obtenir un image virtuelle par une lentille convergente : placer un objet (réel) entre le plan focal objet et la lentille.

■ Lentilles Divergentes

$$f' = \overline{OF'} = -f = \overline{OF} = \frac{\overline{FF'}}{2} < 0$$

Objet	Image	Construction
$\frac{\text{r\'eel}}{OA} < 0$	virtuelle $0 < G_t < +1$ $\rightarrow \text{droite}$ $\rightarrow \text{réduite}$	x' A F' A' O F x
virtuel entre (π) et la lentille $0 < \overline{OA} < f$	réelle $+1 < G_t < +\infty$ \rightarrow droite \rightarrow agrandie	x' F' O A F A' x
$ \frac{\text{virtuel} \in (\pi)}{\overline{SA} = f} \\ A = F $	à l'infini $\alpha' = \frac{\overline{AB}}{f} = -\frac{\overline{AB}}{f'}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	virtuelle $-\infty < G_t < -1$ $\rightarrow \text{renvers\'ee}$ $\rightarrow \text{agrandie}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$virtuel \\ 2f < \overline{OA} < +\infty$	virtuelle $-1 < G_t < 0$ $\rightarrow \text{renvers\'ee}$ $\rightarrow \text{r\'eduite}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
à l'infini réel ou virtuel $\overline{OA} = \pm \infty$	virtuelle et dans le plan focal image $\overline{OA'} = f$ $A' = F$ $\overline{A'B'} = \alpha.f'$	$A_{\infty} \xrightarrow{B' \land \alpha} F \xrightarrow{A_{\infty}} A_{\infty}$ $A' = F' O$ B_{∞}

Une seule possibilité pour obtenir un image réelle par une lentille divergente : placer un objet (virtuel) entre la lentille et le plan focal objet.