Ex-CC2.16

La décomposition à 1151°C de l'oxyde nitrique a lieu suivant la réaction:

$$2 \text{ NO}_{(g)} \xrightarrow{k} \text{ N}_2 + \text{ O}_2$$

A volume constant et pour une pression initiale d'oxyde nitrique $P_0 = 200 \text{ mmHg}$, la pression partielle P de NO varie en fonction du temps de la manière suivante:

P	(mmHg)	200	156	128	108	94	83
t	(min)	0	5	10	15	20	25

Dans les mêmes conditions, mais pour des pressions initiales de NO différentes, on a déterminé les vitesses initiales de disparition de NO (v_0) correspondantes:

P ₀ (mmHg)	100	150	200	300	400
$v_0(mmHg.min^{-1})$	2.8	6	11	25	45

- a) Déterminer l'ordre de la réaction en vous basant sur les valeurs de vo
- b) Ecrire et intégrer l'équation cinétique.
- c) Vérifier l'ordre obtenu en utilisant une méthode graphique avec les valeurs du tableau 1.
- d) Une étude en fonction de la température a donné les résultats suivants:

T (°C)	974	1057	1260
2k (mol ⁻¹ .ml.s ⁻¹)	20,5	87	2100

Evaluer graphiquement l'énergie d'activation et déterminer le facteur préexponentiel. **Donnée**: R = 8, 314 J. K⁻¹ mol⁻¹ = 62,3 mmHg L. mol⁻¹ K⁻¹

Ex.CC3.12

$$A + E \xrightarrow{k_1} AE \xrightarrow{k_2} B + E$$

- 1) Exprimer $\frac{d[AE]}{dt}$ en fonction de [A], [AE] et [E]_o (concentration initiale en E).
- 2) En supposant [AE] sensiblement constant, déterminer [AE] = $f(K_M)$, K_M ayant pour expression : $K_M = \frac{k_{-1} + k_2}{k_1}$
- 3) Exprimer $v = -\frac{d[A]}{dt}$ en fonction de [A] et de [E]_o.

Comment peut-on déterminer graphiquement K_M à partir des mesures de la vitesse de la réaction et de la concentration en A au cours du temps ?

Ex-CC3.13

La pyrolyse du méthane peut être décrite par le mécanisme suivant :

$$CH_4 \xrightarrow{k_1} CH_3^{\bullet} + H^{\bullet}$$

$$CH_3^{\bullet} + CH_4 \xrightarrow{k_2} C_2H_6 + H^{\bullet}$$

$$Ea_1 = 423 \text{ kJ.mol}^{-1}$$

$$Ea_2 = 201 \text{ kJ.mol}^{-1}$$

$$CH_4 + H^{\bullet} \xrightarrow{k_3} CH_3^{\bullet} + H_2$$

$$Ea_3 = 29 \text{ kJ.mol}^{-1}$$

$$CH_3^{\bullet} + H^{\bullet} + M \xrightarrow{k_4} CH_4 + M$$

$$Ea_4 = 0 \text{ kJ.mol}^{-1}$$

- 1) S'agit-il d'un mécanisme par stades ou d'un mécanisme en chaîne ?
- 2) A quoi correspond M?
- 3) Exprimer la vitesse de décomposition du méthane en fonction de k₁, k₂, k₃, k₄, [CH₄] et [M].
 Quel est l'ordre de la réaction si l'on admet que M = CH₄?
- 4) Calculer l'énergie d'activation de la réaction globale connaissant les énergies d'activation Ea₁, Ea₂, Ea₃, et Ea₄ des réactions élémentaires.